Нужно ли в лаборатории проводить техобслуживание спектрофотометра. Спектрофотометры, их устройство

Спектрофотометрия — это метод, с помощью которого измеряют химический состав изучаемого вещества. Спектрофотометр пропускает через образец поток световых лучей любой длины и диапазона.

Образцом в данном случае выступает раствор изучаемого вещества в жидкости, размещенный в прозрачном для излучения кювете. Причем спектрофотометры выпускаются как с наличием источника УФ - лучей, инфракрасных лучей, так и работающие в оптическом диапазоне, который виден человеку.

С помощью этого прибора измеряют отношение двух потоков оптического излучения. Один поток падает на исследуемый образец, а другой поток испытывает какое - либо взаимодействие с данным образцом. Спектрофотометр производит измерения для различных длин волн оптического излучения. В результате этих операций получается спектр отношений потоков. Данные приборы используются в медицине и в промышленной отрасли для контроля технологических процессов. С помощью спектрофотометра определяют состав и наличие примесей в различных жидкостях, таких как медицинские растворы, вода, продукты нефтяной и химической промышленности, продукция лакокрасочного производства.

Как устроен спектрофотометр

Оптическая схема простейшего спектрофотометра приведена на рисунке. В качестве источников излучения в приборах наиболее широко используются газоразрядная водородная лампа и вольфрамовая лампа накаливания.

Газоразрядная водородная лампа обеспечивает сплошной спектр в ультрафиолетовой области и особенно удобна для измерений от 200 до 350 нм.

Вольфрамовая лампа накаливания используется для работы в ближней ультрафиолетовой области, видимой и ближней инфракрасной области, т. е. в пределах от 320 до 3000 нм. Ртутные лампы обеспечивают очень высокую интенсивность в ультрафиолетовой и видимой областях, давая интенсивную линию спектра ртути и сплошное излучение. Ртутные лампы необходимо нагревать в течение 15 минут, прежде чем они начнут давать постоянное излучение.

Недостатком является высокая температура, которую ртутная лампа приобретает при работе.

Ксеноновые разрядные лампы применяются в ряде приборов для измерений в области от 200 до 900 нм.


Монохроматор
- приспособление для изолирования очень узкой полосы излучения из источника света. Смешанное излучение проходит через щель в монохроматор, в котором луч разделяется на спектр при помощи призмы или дифракционной решетки. Этот спектр фокусируется на выход щели. Путем вращения призмы или дифракционной решетки можно выделить определенную часть спектра, которая через щель направляется в кюветное отделение, где находится раствор исследуемого вещества.

Классификация спектрофотометров

Учитывая назначение и конструкцию спектрофотометров, их можно разделить на три группы: простые, двуволновые, приборы с фотодиодной решеткой.

Эти приборы могут быть стационарными (самый популярный - ). Такие виды эксплуатируются только в лабораториях для проведения различных технологических процессов.

Второй вид спектрофотометров — портативный, который предназначен для работы в полевых условиях и в различных помещениях. Портативные приборы могут быть применены для небольшого узкого круга применяемых методик измерений.

Современный рынок лабораторного оборудования большим ассортиментом спектрофотометров. Они отличаются друг от друга строением оптических систем, функциональными возможностями и, конечно, .

Выбирая такой прибор необходимо определиться с ценой и моделью, которая поможет быстро и качественно решить поставленные задачи.

Спектрофотометрия – экспериментальный метод, который позволяет измерить концентрацию растворенных веществ по количеству поглощаемого раствором света. Высокая эффективность данного метода обусловлена тем, что различные соединения по-разному поглощают свет с той или иной длиной волны. По количеству прошедшего сквозь раствор света можно выяснить, какие соединения присутствуют в растворе, и определить их концентрации. В лабораториях для этого используют специальный прибор – спектрофотометр.

Шаги

Часть 1

Подготовка образцов

    Включите спектрофотометр. Большинству спектрофотометров необходим предварительный разогрев – это помогает получить более точные результаты. Включите прибор и подождите хотя бы 15 минут, прежде чем приступать к измерениям.

    • Используйте время разогрева прибора для подготовки образцов.
  1. Помойте кюветы и пробирки. При выполнении лабораторной работы в школе вам могут выдать одноразовые пробирки, которые не нужно чистить. Если же вы используете многоразовые кюветы или пробирки, перед работой их необходимо как следует вымыть. Тщательно помойте всю посуду деионизированной водой.

    Залейте в кювету требуемое количество исследуемой жидкости. Максимальный объем некоторых кювет составляет 1 миллилитр (мл), в то время как пробирки могут быть рассчитаны на 5 миллилитров. Для получения точных результатов необходимо, чтобы луч лазера проходил через жидкость и не задевал пустую часть емкости.

    Приготовьте контрольный раствор. Контрольный, или холостой раствор представляет собой чистый растворитель, без присутствующих в других образцах примесей. Например, если вы растворили в воде соль, в качестве холостого раствора следует взять простую воду. Если при этом вы окрасили воду в красный цвет, в качестве холостого раствора также необходимо взять красную воду. Холостой раствор должен иметь тот же объем, что и исследуемые растворы, и его следует налить в такую же емкость.

    Протрите наружную поверхность кюветы. Прежде чем поместить кювету в спектрофотометр, необходимо убедиться, что она чистая, иначе частицы грязи и пыли могут исказить результаты. Протрите безворсовой тканью стенку кюветы снаружи, чтобы удалить возможные капли воды и частички пыли.

    Часть 2

    Проведение эксперимента
    1. Выберите и задайте длину волны света для анализа образцов. Для большей точности используйте свет с одной длиной волны (монохроматический свет). Необходимо выбрать такую длину волны, чтобы свет поглощался одним из соединений, которое предположительно входит в состав исследуемого раствора. Выставьте выбранную длину волны на спектрофотометре в соответствии с инструкциями по эксплуатации прибора.

      Откалибруйте прибор по холостому раствору. Поместите в держатель спектрофотометра кювету с холостым раствором и закройте крышку прибора. Аналоговые спектрофотометры снабжены шкалой со стрелкой, угол отклонения которой определяется интенсивностью прошедшего света. В случае холостого раствора стрелка отклонится вправо. Запишите показания прибора на случай, если они понадобятся вам в дальнейшем. Затем переведите стрелку в нулевое положение с помощью ручки настройки (при этом холостой раствор должен по-прежнему оставаться в приборе).

      • Цифровые спектрофотометры вместо шкалы снабжены дисплеем, и их можно откалибровать таким же образом. Установите ноль для холостого раствора с помощью кнопок настройки.
      • Калибровка сохранится и после того, как вы достанете холостой раствор. При работе с остальными образцами свет, который поглощается беспримесным растворителем, будет автоматически вычитаться из показаний прибора.
    2. Достаньте кювету с холостым раствором и проверьте калибровку. В отсутствие холостого раствора стрелка должна остаться на нулевой отметке (или на дисплее должен сохраниться ноль). Вновь поместите в прибор холостой раствор и убедитесь в том, что спектрофотометр по-прежнему показывает ноль. При правильной калибровке прибор должен показывать ноль и с холостым раствором, и без него.

      • В случае ненулевых показаний прибора повторите калибровку с холостым раствором.
      • В случае дальнейших проблем попросите о помощи или обратитесь к обслуживающему прибор техническому персоналу.
    3. Измерьте оптическую плотность экспериментального образца. Достаньте из прибора холостой раствор и поместите в него исследуемый образец. Подождите примерно 10 минут, пока стрелка не успокоится или пока не перестанут изменяться цифры на дисплее. После этого запишите значение коэффициента пропускания и/или оптической плотности.

      • Чем больше света проходит через образец, тем меньше света он поглощает. Обычно записывают значения оптической плотности, которые имеют вид десятичной дроби, например 0,43.
      • Повторите измерения для каждого образца по меньшей мере три раза и найдите средние значения. Таким образом вы получите более точные результаты.
    4. Повторите эксперимент для других длин волн. Образец может содержать несколько неизвестных примесей, которые поглощают свет при разной длине волны. Чтобы исключить неопределенность, повторите измерения с шагом 25 нанометров для всего спектра. Это позволит вам определить другие соединения, которые входят в состав изучаемого раствора.

Электронный прибор, с помощью которого определяется состав веществ и их соединений в эмульсиях, взвесях и растворах называется медицинским спектрофотометром. Устройство имеет два наиболее известных названия: фотоэлектрический фотометр и фотоэлектроколориметр. Спектрофотометры используются в различных сферах, но больше всего они нашли свое применение в медицине и фармацевтике. Приборы отличаются высокой точностью и позволяют сэкономить реактивы и время на проведения исследования.

Особенности спектрофотометров

Самые первые фотометры нуждались в участии медицинского работника для проведения исследования. Специалист должен был сравнивать и фиксировать полученные с устройства показатели. Данные сопоставлялись с общепринятыми нормативами. На смену таким приборам пришли автоматизированные фотоэлектроколориметры.

Спектрофотометры – это современное медицинское оборудование, которое предназначается для изучения и анализа свойств предметов либо веществ с помощью электромагнитного излучения. Световые лучи проходят сквозь пробу или отражаются от нее. Прибор сравнивает поток света, который первоначально направляется на биоматериал с излучением, проходящим сквозь образец либо отражающим от его поверхности.

Для проведения анализа сканируется широченный диапазон волн: начиная от 160 нм (ультрафиолет), заканчивая 3300 нм (инфракрасные лучи), с помощью чего получается максимально точная информация о веществе.

Спектрофотометрическая методика основана на том, что каждый предмет обладает особенными спектральными характеристиками. Именно поэтому во время проведения анализа не играет роли температурный режим и агрегатное состояние образца. Особенностью спектрофотометра является возможность проведения качественных и количественных исследований.

Главным плюсом фотоэлектрического фотометра есть вывод полученной информации на дисплей (лаборант может увидеть состав пробы, наличие и численность примесей). С помощью специальных световых фильтров устройство определяет в образце не менее 3-5 составляющих компонентов.

Сферы применения

Спектрофотометры используются для исследований в биохимии (анализируются липиды, электролиты, субстраты, ферменты), иммунохимии (проводится анализ ламбда, ферритин, миоглобин, микроальбумин, гаптоглобин), бактериологии. Для анализа качества еды и воды (сточной, природной и питьевой) применяется фотоэлектроколориметр. При определении качественных характеристик воды определяется мутность и цвет жидкости, наличие тяжелых металлов и поверхностно-активных компонентов, содержание нитритов, фосфатов, фенолов и сульфатов.

Спектрофотометр пригодится для проведения научных, гормональных, экологических и специальных исследований. В отделениях санитарно-эпидемиологического надзора обязательным является наличие данного прибора. Кроме медицины оборудование используется в сельском хозяйстве и промышленной отрасли.

Фотоэлектрический фотометр нужен для:

  • выявления чистоты исследуемых образцов и нахождения примесей;
  • измерения в жидкостях оптической плотности и ее изменений;
  • определения концентрации пробы (исследование проводится в медицинских учреждениях);
  • изучения, анализа состава и химического строения веществ, образцов и реактивов;
  • спектральной диагностики.

Фотоэлектроколориметр – это устройство, которое применяется для проведения различных исследований: медицинских; биологических; фармацевтических; химических. Благодаря точным результатам, которые появляются на экране оборудования, доктор может узнать характеристику реагентов и назначить пациенту эффективное лечение.

Как устроен прибор?

Абсолютно все автоматизированные фотоэлектроколориметры состоят из: источника света (вольфрамовой, дейтериевой или галогено-дейтериевой лампы); усилителя сигналов; фотоприемника; монохроматора; оптических составляющих (световодов, зеркала, призмы и стекла); отсека для реагента.

Монохроматор содержит дифракционную решетку либо призму, которые выделяют излучение определенной длины волны. В различных моделях есть от одного до четырех отсеков для проб. С помощью фотоприемников спектрофотометр фиксирует уровень светового излучения, который проходит сквозь биологический материал.

Наиболее современные приборы укомплектованы фотодиодной матрицей, в состав которой входит встроенный датчик. Чип преобразует световой сигнал в электрический, это фиксируется микроконтроллером и высвечивается на мониторе оборудования. Не достаточно мощные приборы обрабатывают волны с различной длиной постепенно, и только потом выводят результаты на дисплей. От количества фотодиодных датчиков зависит производительность и информативность спектрофотометра.

С помощью приборов с фотодиодной матрицей можно проводить оперативные исследования не отходя от производства либо во время возникновения химической реакции. Это позволяет детально проанализировать состояние реакционных веществ.

Особенности работы устройства

Спектрофотометрическая методика основана на измерении степени отражения или поглощения монохроматических световых лучей. Во время исследования посторонние факторы не могут влиять на результативность анализа. Все приборы работают на двух разновидностях схем. В первом случае на пробу попадает монохроматический световой луч с определенной длиной волны, который после прохождения через образец направляется на фотоприемник, измеряющий разницу между потоками.

Суть второй схемы заключается в том, что на реагент попадает световой поток прямо от лампы, затем монохроматор выделяет небольшой пучок и направляет его к фотоприемнику.

Спектрофотометры бывают однолучевыми и двухлучевыми. В приборах с одним лучом для измерения применяются коэффициенты коррекции. В случае двухлучевой диагностики один луч попадает на пробу, а второй – на эталонное значение. Оборудование с двумя лучами более точное, информативное и менее чувствительное к окружающим факторам.

Правила выбора спектрофотометра

При подборе устройства необходимо учитывать сферу его применения и выполняемые задачи. Фотоэлектрические фотометры бывают переносными и стационарными. Портативные аппараты имеют небольшой вес, компактные и легкие в использовании. Стационарные приборы устанавливаются в медицинских учреждениях и диагностических центрах. С помощью этих устройств проводятся более сложные измерения. Такие спектрофотометры могут подключаться к персональному компьютеру с помощью кабеля, а полученные данные подлежат архивированию, обработке и распечатке на принтере.

При выборе медицинского аппарата нужно учитывать: спектр действия (диапазон); длину волны; многофункциональность устройства; габариты; цену; вероятность проведения определенных исследований; количество секций для реагентов; способ получения результатов. Также необходимо обратить внимание на штатную комплектацию модели спектрометра, потому как практически все современные приборы продаются с кюветом и чашкой Петри.

Устройство спектрофотометров и их характеристики могут значительно отличаться в зависимости от производителя и задач, для решения которых рассчитан прибор. Однако основные элементы конструкции у всех приборов сходны. Это источник света, монохроматор, кюветное отделение с образцом и регистрирующего детектора. В качестве источника света чаще всего используются ртутные или галогеновые лампы. Монохроматор - устройство для выделения из всего излучаемого спектра какой-то узкой его части (1-2 нм). Монохроматоры могут быть построены на основе разделяющих свет призм либо на основе дифракционной решетки. Также в некоторых приборах могут дополнительно применяться наборы светофильтров. Кюветное отделение может быть оборудовано механизмами для термостатирования, перемешивания, добавления вешеств непоспедственно в ходе процесса измерения. Для исследований малых объемов веществ может использоваться безкюветная технология, когда образец удерживается за счет сил поверхностного натяжения жидкости.

1 - источник световой энергии (видимая область); 2 - поворотный отражатель; 3 - источник световой энергии (ультрафиолетовая область); 4 - оптическая система, направляющая поток энергии на входную щель; 5 - входная щель; 6 - оптическая система, формирующая параллельный поток световой энергии; 7 - диспергирующий элемент (призма или дифракционная решетка); 8 - оптическая система, направляющая поток энергии на выходную щель; 9 - выходная щель; 10 - оптическая система, формирующая поток энергии, проходящий через кювету; 11 - кювета; 12 - фотоприемник; 13 - аналого-цифровой преобразователь; 14 - микро-ЭВМ; 15 - индикатор; 16 - пульт оператора; 17 - интерфейс связи с внешней ЭВМ и регистрирующим устройством

Поворотный отражатель (2) направляет поток световой энергии от одного из источников (1 или 3), через оптическую систему (4) на входную щель (5) монохроматора. С выхода монохроматора через щель (9) поступает монохроматический поток световой энергии с определенной длиной волны λ. Установка необходимой длины волны чаще всего осуществляется путем изменения угла падения полихроматического потока световой энергии по отношению к плоскости диспергирующего элемента (7). Оптическая система (10) формирует световой поток таким образом, чтобы при минимально допустимом объеме исследуемого раствора и многократной установке кюветы (11) в кюветное отделение геометрия потока не изменилась.

Полихроматический свет от источника проходит через монохроматор, который разлагает белый свет на цветовые компоненты. Монохроматическое излучение с дискретным интервалом в несколько нанометров проходит через ту часть прибора, где располагается образец с исследуемой пробой.


ОСНОВНЫЕ УЗЛЫ СПЕКТРОФОТОМЕТРА

ИСТОЧНИК СВЕТА

Спектрофотометр UV/VIS (ультрафиолет + видимый свет) имеет два источника света: для видимого участка спектра и источник ультрафиолета - от 200 до 390 нм.

Источником видимого света служит вольфрамовая, как правило, галогенная лампа, дающая постоянный поток света в диапазоне 380 - 950 нм, являясь стабильным и долговечным источником световой энергии со средним сроком службы более 500 ч.

В качестве источника УФ используются водородные или дейтериевые лампы. Ультрафиолетовые лампы, содержащие дейтерий, имеют высокую интенсивность излучаемого потока и непрерывный спектр в диапазоне от 200 до 360 нм.

КЮВЕТЫ

Как известно исследуемый образец помещается в специальные приставки. Для каждого вида образцов они разные. Для твердых - это специальные зажимы, а при спектральных измерениях жидких образцов используются специальные контейнеры из кварцевого стекла, так называемые кюветы.

В большинстве спектрофотометров применяются стандартные кюветы, которые предназначены для такого размещения, которое предусматривает горизонтальную траекторию луча света. Основным недостатком подобных кювет является то, что только небольшая часть образца (около 10%) освещается измеряющим светом. В случае большой ценности образца или доступности его в небольшом объеме, можно использовать микрокюветы или ультрамикрокюветы с объемом 50 или даже 2,5 мкл. Кюветы очень маленьких объемов проявляют капиллярные свойства, и возникают проблемы с образованием пузырьков воздуха, что требует дегазации. Наконец, из таких кювет сложно извлечь обратно образец. Стандартные кюветы имеют внешние размеры: 12,5 12,5 45 мм, а внутренние - 10 10 мм. Кюветы с меньшим внутренним объемом, выпускаемые одним производителем имеют тот же внешний размер, что и стандартные, но внутренний, например 10 1,25 мм.

ДИСПЕРГИРУЮЩИЙ ЭЛЕМЕНТ

В спектрофотометрах в качестве диспергирующего элемента чаще всего используют призмы и дифракционные решетки.

Дифракционная решетка технологически более сложное изделие, чем призма. Большинство применяемых в настоящее время решеток изготовлены способом выжигания и голографического копирования и представляют собой пластины с большим числом параллельных штрихов - до нескольких сот на миллиметр.

Основным преимуществом использования призмы в спектрофотометре является ее низкая стоимость.

Преимущество дифракционных решеток состоит в том, что они обеспечивают линейную дисперсию света на всем диапазоне видимого и УФ спектров. Отрицательным моментом применения дифракционных решеток является их высокая стоимость в сравнении с призмами и светофильтрами.

Одной из самых важных характеристик монохроматоров является полоса пропускания, выражаемая в единицах длин волн - нанометрах.

Если интерференционные фильтры дают ширину пропускания в диапазоне 6-20 нм, то призмы и дифракционные решетки дают более узкую полосу - менее 5 нм, а следовательно, и большую "чистоту" (монохромность) света, падающего на кювету с образцом. Полоса пропускания является одной из важнейших характеристик спектрофотометра. Уменьшение полосы пропускания влечет за собой повышение разрешающей способности спектрофотометра - значимой характеристики качества спектрофотометрических приборов.

МОНОХРОМАТОРЫ


Действие спектральных приборов - спектрофотометров - основано на том, что в некоторых физических системах условия прохождения света оказываются различными. Такие системы называются диспергирующими. Обычно в качестве диспергирующего элемента используют призму или дифракционную решетку. Устройства, позволяющие разделить полихроматический свет на монохроматический спектр излучения, называются монохроматорами.

Функциональная схема монохроматора с призмой.

-входная щель; 2-объектив, формирующий параллельный поток световой энергии; 3-призма; 4 - объектив, направляющий поток энергии на экран; 5 - экран; 6 - выходная щель

Щель (1), на которую падает полихроматический поток световой энергии, находится в фокальной плоскости линзы (2). Эта часть прибора называется коллиматором. Выходящий из объектива (2) параллельный поток световой энергии падает на призму (3). Вследствие дисперсии (обусловленной зависимостью показателя преломления от длины волны) свет различных длин волн выходит из призмы под разными углами. Если в фокальной плоскости линзы объектива (4) поставить экран (5), то линза сфокусирует параллельные потоки энергии для различных длин волн в разных местах экрана. Поворачивая призму (3), можно просканировать через щель (6) монохроматические потоки энергии во всем спектре излучения. Часто в качестве диспергирующего элемента используется дифракционная решетка, которая представляет собой стеклянную или металлическую пластину, на которой нанесены параллельные одинаковые штрихи, расположенные на строго одинаковых расстояниях друг от друга. На рисунке показана дифракционная решетка, состоящая из чередующихся параллельных друг другу щелей одинаковой ширины b, расположенных на одинаковом расстоянии a друг от друга. Сумма (a+b) является периодом этой структуры и называется постоянной решетки d.


Функциональная схема монохроматора с дифракционной решеткой.

- входная щель; 2 - объектив, формирующий параллельный поток световой энергии; 3 - дифракционная решетка; 4 - объектив, направляющий поток энергии на экран; 5 - экран; 6 - выходная щель

Через входную щель (1) полихроматический поток световой энергии линзой объектива (2) трансформируется в параллельный поток, который проходит через щели дифракционной решетки (3). В каждой точке на экране (5), расположенном в фокальной плоскости линзы объектива (4), соберутся те лучи, которые до линзы были параллельными между собой и распространялись под определенным углом Q к направлению падающей волны. Поэтому освещенность в точке Р на экране (5) определяется результатом интерференции вторичных волн, распространяющихся как от разных участков одной щели, так и от разных щелей. Существует направление, распространяясь по которому, вторичные волны от всех щелей будут приходить в точку Р в одной фазе и усиливать друг друга, и другое - когда волны не совпадают по фазе и ослабляют друг друга. Таким образом, на экране наблюдается чередование светлых и темных полос. Условие формирования максимумов от дифракционной решетки, то есть когда волны усиливают друг друга при интерференции, наблюдается тогда, когда разность хода равна целому числу волн. Зависимость формирования максимумов различных длин волн от угла Q дифракционной решетки выражается формулой: d*sinQ = k - 1, где k= 0, 1, 2.

Если на решетку падает свет разных длин волн, то максимумы для различных длин волн располагаются под различными углами Q к первоначальному направлению распространения света. Поэтому дифракционная решетка разлагает полихроматический свет в дифракционный спектр и употребляется как диспергирующий прибор.

Рассматривая вопрос измерения цвета, возникает сложность в выборе спектрофотометров.

Спектрофотометрия: принципы и оборудование

Рассматривая вопрос измерения цвета, мы понимаем, что цвет — психофизическое ощущение, возникающее в мозге человека под воздействием цветового стимула. Однако психофизическое ощущение измерению не поддается.

Понимая под цветовым стимулом лучистую энергию, проникающую в глаз, следует отметить, что эта энергия определяется физическими свойствами образца и источника освещения. Образец обладает свойством пропускать или отражать падающий на него свет в разных точках спектра по-разному. На этом основан принцип работы спектрофотометра. С помощью встроенного в прибор источника света образец освещается; свет, отраженный от образца либо пропущенный через него, анализируется таким образом, что определяется отношение отраженного от образца или пропущенного через образец светового потока к падающему потоку во многих точках спектра. Т. е. мы получаем на выходе спектральный коэффициент отражения или пропускания, выраженный в процентах.

Однако, кроме спектральной кривой, любой спектрофотометр может представить измеренные данные в колориметрических координатах цвета, например в XYZ или CIE L*a*b*. Координаты цвета получаются расчетным путем из спектрального коэффициента отражения (пропускания), спектрального распределения энергии источника освещения и кривых сложения стандартного наблюдателя (отражающих свойства рецепторов человеческого глаза). По этой причине для измерения цветовых координат спектрофотометром необходимо также указать источник освещения (D50, D65, A, F11 и т. д.) и угол наблюдения (2 или 10 градусов). Цветовое различие между двумя образцами традиционно определяется как расстояние между их цветовыми координатами в цветовом пространстве CIE L*a*b*.

Основные понятия и определения

Как уже упоминалось, способ измерения цвета спектрофотометром связан с разложением лучистого потока, направленного от объекта к глазу на спектральные составляющие и измерением каждого компонента в отдельности.

Спектральный коэффициент пропускания определяется отношением пропущенного лучистого потока к падающему потоку в выбранном узком спектральном интервале.

Спектральный апертурный коэффициент отражения определяется отношением лучистого потока, отраженного от объекта и отраженного от совершенного отражающего рассеивателя. (Далее в статье будет идти речь только о работе спектрофотометров на отражение.) Совершенный отражающий рассеиватель определяется как идеальный однородный рассеиватель с коэффициентом отражения, равным единице.

Белый стандарт

Реальных поверхностей со свойствами совершенного отражающего рассеивателя в природе не существует, однако, в качестве замены используются материалы, близкие по свойствам, так называемые «белые стандарты», которые с помощью специальных методов нормируются к идеальному рассеивателю. Величина спектрального коэффициента отражения белых стандартов меняется в зависимости от длины волны и заключена в пределах 0,970—0,985 в видимой части спектра. Стандарты могут изготавливаться из оксида магния, сульфата бария или других материалов, также могут использоваться керамические плитки. Основная проблема рабочих стандартов — поддержание отражающих свойств в течение длительного времени.

В современных спектрофотометрах диапазон измерения охватывает область от 360 до 750 нм с интервалом измерения 10 нм. Спектральный коэффициент отражения представляет собой плавную кривую с несколькими максимумами. В большинстве приборов отраженный от образца цвет диспергируется с помощью дифракционной решетки и измеряется с помощью кремниевой диодной линейки.

Геометрия измерения

Геометрия измерения определяет, каким образом образец освещается и наблюдается. Международной комиссией по освещению рекомендованы четыре различные геометрии:

1. 45/0. Образец освещается одним или несколькими световыми пучками, оси которых составляют угол 45±5° относительно нормали к поверхности образца. Угол между направлением наблюдения и нормалью к образцу не должен превышать 10°. Угол между осью освещающего пучка и любым его лучом не должен превышать 5°. Те же ограничения должны быть соблюдены и для наблюдаемого пучка.

2. 0/45. Образец освещается световым пучком, ось которого составляет с нормалью к образцу угол не более 10°. Образец наблюдается под углом 45±5° относительно нормали. Угол между осью освещаемого пучка и любым его лучом не должен превышать 5°. Те же ограничения должны быть соблюдены и для наблюдаемого пучка.

3. D /0. Образец освещается диффузно с помощью интегрирующей сферы. Угол между нормалью к образцу и осью пучка наблюдения не должен превышать 10°. Интегрирующая сфера может иметь любой диаметр при условии, что суммарная площадь отверстий не превышает 10 % внутренней отражающей поверхности сферы. Угол между осью наблюдаемого пучка и любым его лучом не должен превышать 5°.

4. 0/ D . Образец освещается световым пучком, ось которого составляет с нормалью к образцу угол не более 10°. Отраженный поток собирается с помощью интегрирующей сферы. Угол между осью освещаемого пучка и любым его лучом не должен превышать 5°. Интегрирующая сфера может иметь любой диаметр при условии, что суммарная площадь отверстий не превышает 10 % внутренней отражающей поверхности сферы.

Модификации основных типов спектрофотометров

На практике в настоящее время используются только две геометрии измерения — 45/0 и D/0. Остановимся на них подробнее.

Спектрофотометры с геометрией 45/0 относятся к классу недорогого портативного оборудования и успешно используются технологами для контроля цвета, измерения тестовых шкал для построения ICC профилей и выполнения других задач. Первые спектрофотометры с такой геометрией имели один источник света, потом появились приборы с двумя источниками, расположенными симметрично относительно нормали. Однако было замечено, что при освещении образцов с разных сторон измерения цвета могут иметь существенные различия. Для усреднения этих различий стали использоваться спектрофотометры с круговым освещением образца с помощью источника в виде кольца. Встречающаяся аббревиатура этой геометрии измерения — 45/0:с . При всех своих достоинствах такие приборы имеют существенные ограничения в использовании: ими нельзя измерять металлизированные материалы, которые зеркально отражают свет, попавший на них. Очевидно, что то же самое касается высокоглянцевых материалов — чем выше глянец образца, тем выше погрешность измерения.

Эти ограничения снимаются при использовании спектрофотометров с геометрией D/0, поскольку образец освещается диффузно. Тем не менее, для возможности исключения зеркальной составляющей высокоглянцевых материалов приемник света размещается под углом 8° к нормали, а напротив него симметрично относительно нормали устанавливается ловушка блеска, которая может обеспечить включение или исключение соответствующего фактора. Считается, что зеркальная составляющая коэффициента отражения возникает в результате отражения света глянцевой поверхностью.

Свет, который не попадает на образец под углом 8° (благодаря ловушке блеска), не отражается зеркально в направлении приемника, следовательно, отраженный образцом поток состоит только из диффузного света. В таком случае геометрия измерения становится D/8, а не D/0, а наличие или отсутствие зеркального компонента может обозначаться как D /8: i (ловушка закрыта, зеркальный компонент включен) и D /8: e (ловушка открыта, зеркальный компонент исключен). Интегрирующая сфера обычно покрывается сульфатом бария, хотя могут использоваться и другие материалы. Очевидно сходство материалов покрытия сферы с белыми стандартами, использующимися для калибровки спектрофотометра. Чтобы на образец не попал свет, излучаемый источником, между ним и образцом помещается небольшой экран, иначе освещение образца не будет являться диффузным. Большинство этих дорогих высококлассных приборов не относятся к числу портативных, наиболее распространенный диаметр сферы — 150 мм, хотя существуют и переносные сферические спектрофотометры со сферами диаметром 50 мм.

Двухлучевой спектрофотометр

Стабильность работы сферического спектрофотометра зависит от многих факторов. Изменение интенсивности источника освещения, дрейф электроники, старение покрытия интегрирующей сферы снижают точность работы прибора. Обойти эти проблемы позволяет двухлучевая конструкция спектрофотометра. Принцип его работы состоит в том, что одновременно измеряется свет, падающий на образец и отраженный от него. Т. е. прибор калибруется во время каждого измерения. Это позволяет добиться прекрасной стабильности в работе и согласованности нескольких приборов этого типа.

Источники света в спектрофотометрах

Принцип работы спектрофотометра подразумевает независимость измерений от типа источника света в приборе, поскольку мы измеряем отношение отраженного (пропущенного) света к падающему на образец. В настоящее время широко используются два источника света в спектрофотометрах: кварцевая галогеновая лампа и импульсная ксеноновая лампа. Современные спектрофотометры все чаще оснащаются ксеноновыми импульсными лампами. Спектральное распределение таких ламп легко отфильтровать для воспроизведения D65, в то время как галогеновые лампы производят излучение, близкое к источнику А. Это означает, что галогеновые лампы имеют недостаточное излучение в УФ-области, что не позволяет правильно оценить цвет материалов с флуоресцентными отбеливающими добавками.

Такие вещества поглощают энергию в УФ-области и излучают ее в синей области видимого спектра, что компенсирует естественную желтизну материала. Измерить цвет флуоресцирующего материала можно, освещая образец светом, имитирующим D65, имеющим достаточную УФ-составляющую излучения. Очевидно, что оценить присутствие и влияние отбеливающих добавок можно, сравнивая спектральные кривые отражения образца, освещенного ксеноновой лампой за УФ-фильтром, отсекающим УФ-излучение и без него.

Таким образом, можно сделать вывод, что при выборе спектрофотометра следует учитывать оптические свойства материалов, подлежащих измерению и, в соответствии с ними, использовать прибор с определенной геометрией излучения и источником света.