Поток положительно заряженных частиц ядер гелия. Альфа-излучение

Теория: Радиоактивность - изменение состава атомного ядра.

Альфа излучение - поток ядер гелия (поток положительно заряженных частиц)
При альфа излучении массовое число уменьшается на 4, а зарядовое уменьшается на 2.
Правило смещения: при альфа излучении элемент смещается на две клетки к началу таблицы Менделеева.

бета излучение - поток электронов (поток отрицательно заряженных частиц)
При бета излучении массовое число не меняется, зарядовое увеличивается на 1.
Правило смещения: при бета излучении элемент смещается на одну клетку к концу таблицы Менделеева.

гамма излучение - электромагнитная волна высокой частоты и проникающей способностью.

При попадании α и β частиц в магнитное поле на них действует сила, отклоняющая их в сторону. Масса альфа частиц больше чем масса бета частиц, поэтому они отклоняются слабее. Направление силы находится по . γ лучи не откланяются.

Периодом полураспада называется промежуток времени, в течение которого распадается половина исходного числа радиоактивных ядер. Но закон полураспада справедлив только для большого числа атомов. Так как невозможно предугадать когда распадется отдельно взятое ядро, но для большого числа частиц этот закон справедлив.


При испускании γ-кванта
1) массовое и зарядовое числа ядра не изменяются
2) массовое и зарядовое числа ядра увеличиваются
3) массовое число ядра не изменяется, зарядовое число ядра увеличивается
4) массовое число ядра увеличивается, зарядовое число ядра не изменяется
Решение: гамма излучение это электромагнитная волна, оно не влияет на состав атомного ядра, массовое и зарядовое числа ядра не изменяются.
Ответ: 1
Задание огэ по физике (фипи): Ниже приведены уравнения двух ядерных реакций. Какая из них является реакцией β-распада?

1) только А
2) только Б
3) и А, и Б
4) ни А, ни Б
Решение: бета распад сопровождается испусканием электронов ни в одной из реакций нет электрона.
Ответ: 4
Задание огэ по физике (фипи): Ниже приведены уравнения двух ядерных реакций. Какая из них является реакцией β-распада?
1) только А
2) только Б
3) и А, и Б
4) ни А, ни Б
Решение: бета распад сопровождается испусканием электронов , в обеих реакциях образуется электрон..
Ответ: 3

Задание огэ по физике (фипи): Используя фрагмент Периодической системы химических элементов, представленный на рисунке, определите, изотоп какого элемента образуется в результате альфа-распада висмута.

1) изотоп свинца
2) изотоп таллия
3) изотоп полония
4) изотоп астатина
Решение: в результате альфа-распада порядковый номер элемента уменьшится на 2, из висмута (Z=83) элемент превратиться в изотоп таллия (Z=81)
Ответ: 2

Задание огэ по физике (фипи): Используя фрагмент Периодической системы химических элементов, представленный на рисунке, определите, изотоп какого элемента образуется в результате электронного бета-распада висмута.

1) изотоп свинца
2) изотоп таллия
3) изотоп полония
4) изотоп астатина
Решение: в результате бета-распада порядковый номер элемента увеличится на 1, из висмута (Z=83) элемент превратиться в изотоп полония (Z=84)
Ответ: 3

Задание огэ по физике (фипи): Контейнер с радиоактивным веществом помещают в магнитное поле, в результате чего пучок радиоактивного излучения распадается на три компоненты (см. рисунок).

Компонента (3) соответствует
1) гамма-излучению
2) альфа-излучению
3) бета-излучению
4) нейтронному излучению
Решение: воспользуемся правилом левой руки, поток частиц направлен вверх, четыре пальца направим вверх. Линии магнитного поля направлены в плоскость экрана (от нас), линии магнитного поля направляем в ладонь, отогнутый на 90 o большой палец показывает, что положительно заряженные частицы отклоняются влево. Компонента (3) отклонилась вправо, следовательно эти частицы отрицательно заряжены. Бета-излучение это поток отрицательно заряженных частиц.
2 способ: Компонента (3) отклоняется сильнее чем компонента (1), значит у (3) масса меньше. У электрона масса меньше чем у ядра гелия, значит компонента (3) это поток электронов (гамма-излучение)
Ответ: 3

Задание огэ по физике (фипи): Периодом полураспада называется промежуток времени, в течение которого распадается половина исходного числа радиоактивных ядер. На рисунке представлен график изменения количества N радиоактивных ядер с течением времени t.

Согласно графику период полураспада равен
1) 10 с
2) 20 с
3) 30 с
4) 40 с
Решение: В момент времени t 1 = 20 секунд было N 1 = 40·10 6 радиоактивных ядер, половина радиоактивных ядер N 2 = 20·10 6 распалась к моменту времени t 2 = 40 секунд, следовательно период полураспада T = t 2 - t 1 = 40 - 20 = 20 c, из графика видно, что за каждые 20 секунд распадается половина оставшихся атомов.
Ответ: 2
Задание огэ по физике 2017: При альфа-распаде ядра его зарядовое число
1) уменьшается на 2 еденицы
2) уменьшается на 4 еденицы
3) увеличивается на 2 еденицы
4) увеличивается на 4 еденицы
Решение: При альфа-распаде ядра его зарядовое число уменьшается на 2 единицы, т.к. вылетает ядро гелия с зарядом +2е.
Ответ: 1
Задание огэ по физике (фипи): При исследовании естественной радиоактивности были обнаружены три вида излучений: альфа-излучение (поток альфа-частиц), бета-излучение (поток бета-частиц) и гамма-излучение. Каковы знак и модуль заряда бета-частиц?
1) положительный и равный по модулю элементарному заряду
2) положительный и равный по модулю двум элементарным зарядам
3) отрицательный и равный по модулю элементарному заряду
4) бета-частицы не имеют заряда
Решение: бета-излучение это поток электронов, заряд электрона отрицателен и равен по модулю элементарному заряду.
Ответ: 3
Задание огэ по физике (фипи): Ниже приведены уравнения двух ядерных реакций. Какая из них является реакцией α-распада?

1) только А
2) только Б
3) и А, и Б
4) ни А, ни Б
Решение: При альфа-распаде образуются ядра гелия , из двух реакций только во второй образуется ядро гелия.
Ответ: 2
Задание огэ по физике (фипи): Радиоактивный препарат помещён в магнитное поле. В этом поле могут отклониться
А. α-лучи.
Б. β-лучи.
Правильным ответом является
1) только А
2) только Б
3) и А, и Б
4) ни А, ни Б
Решение: движущаяся заряженная частица попадая в магнитное поле отклоняется, α-лучи и β-лучи имеют заряд, следовательно, они будут отклонятся в магнитном поле.
Ответ: 3
Задание огэ по физике (фипи): Какие виды радиоактивного излучения, проходящего через сильное магнитное поле, не отклоняются?
1) альфа-излучение
2) бета-излучение
3) гамма-излучение
4) альфа-излучение и бета-излучение
Решение: движущаяся заряженная частица попадая в магнитное поле отклоняется, гамма-лучи не имеют заряда, поэтому в магнитном поле они не отклоняются.
Ответ: 3
Задание огэ по физике (фипи): Естественная радиоактивность элемента
1) зависит от температуры окружающей среды
2) зависит от атмосферного давления
3) зависит от химического соединения, в состав которого входит радиоактивный элемент
4) не зависит от перечисленных факторов
Ответ: 4
Задание огэ по физике (фипи): Используя фрагмент Периодической системы химических элементов, представленный на рисунке, определите состав ядра фтора с массовым числом 19.

1) 9 протонов, 10 нейтронов
2) 10 протонов, 9 нейтронов
3) 9 протонов, 19 нейтронов
4) 19 протонов, 9 нейтронов
Решение: число протонов равно порядковому номеру элемента, у фтора 9 протонов, что бы найти число нейтронов из массового числа вычтем зарядовое 19-9=10.
Ответ: 1
Задание огэ по физике (фипи): Какое из трех типов излучения – α, β или γ – обладает наименьшей проникающей способностью?
1) α
2) β
3) γ

Решение: из трех видов излучений, самые крупные это α-частицы, ядра гелия крупнее чем электроны и гамма кванты, следовательно, им труднее пройти через препятствие.
Ответ: 1
Какое из трех типов излучения – α, β или γ – обладает наибольшей проникающей способностью?
1) α
2) β
3) γ
4) проникающая способность всех типов излучения одинакова

Альфа излучение представляет собой поток тяжелых, положительно заряженных частиц, состоящих из протона и нейтрона – ядер гелия, имеющий небольшую начальную скорость и сравнительно высокий уровень энергии (от 3 до 9 МэВ). Пробег альфа частиц, испускаемых преимущественно естественными элементами (радий, торий, уран, полоний и др.), сравнительно невелик. Так, в воздухе он составляет 10…11см, а в биологических тканях - всего несколько десятков микрометров (30…40 Мкм). Альфа частицы, имея сравнительно большую массу и низкую начальную скоростью, при взаимодействии с веществом быстро теряют свою энергию и поглощаются им. Вследствие этого они обладают наибольшей линейной плотностью ионизации, но низкой проникающей способностью.

Бета-излучение представляет собой поток отрицательно заряженных частиц - электронов или положительно заряженных частиц - позитронов и возникает при распаде естественных и искусственных радиоактивных элементов. Обладая высокой скоростью распространения, приближающейся к скорости света, бета частицы имеют больший пробег в среде, чем альфа частицы. Так, максимальный пробег в воздухе бета частиц достигает несколько метров, а в биологических средах –1…2 см. Значительно меньшая масса и уровень энергии (0,0005…3,5 МэВ) бета частиц определяют и более низкую их ионизирующую способность.

Они обладают большей, чем у альфа частиц, проникающей способностью, которая зависит от уровня энергии бета излучателя.

Гамма-излучение, рассматриваемое как поток гамма квантов и представляющее собой электромагнитные колебания с очень короткой длиной волны, возникает в процессе ядерных реакций и радиоактивного распада. Диапазон энергии гамма излучений лежит в пределах 0.01…3 МэВ. Оно обладает весьма высокой проникающей способностью и малым ионизирующим действием. Гамма-излучение глубоко проникает в биологические ткани, вызывая в них разрыв молекулярных связей.

Нейтронное излучение, представляющее собой поток элементарных частиц атомных ядер – нейтронов, обладает большой проникающей способностью, зависящей от энергии нейтронов и химической структуры облучаемого вещества. Нейтроны не имеют электрического заряда и обладают массой, близкой к массе протона. Взаимодействие нейтронов со средой сопровождается рассеянием (упругим или не упругим) нейтронов на ядрах атомов, которое является результатом упругих либо неупругих столкновений нейтронов с атомами облучаемого вещества. В результате упругих столкновений, сопровождающихся изменением траектории нейтронов и передачей атомным ядрам части кинетической энергии, происходит обычная ионизация вещества.

При неупругом рассеянии нейтронов их кинетическая энергия затрачивается, в основном, на радиоактивное возбуждение ядер среды, что может вызвать вторичное излучение, состоящее как из заряженных частиц, так из гамма квантов. Приобретение веществами, облучаемыми нейтронами, так называемой наведенной радиации, увеличивает возможность радиоактивного заражения и является важной особенностью нейтронного излучения.

Рентгеновское изучение представляет собой электромагнитное излучение, возникающее при облучении вещества потоком электронов при достаточно высоких напряжениях, достигающих сотни киловольт. По характеру действия рентгеновское излучение сходно с гамма-излучением. Оно обладает малой ионизирующей способностью и большой глубиной проникновения при облучении вещества. В зависимости от величины электрического напряжения в установке, энергия рентгеновского излучения может быть в пределах от 1 кэВ до 1 MэB.

Радиоактивные вещества самопроизвольно распадаются, с течением времени теряя свою активность. Скорость распада является одной из важных характеристик радиоактивных веществ.

Каждому изотопу присущ определенный период полураспада, т.е. время, за которое распадается половина ядер этого изотопа. Периоды полураспада бывают небольшими (радон-222, протактиний-234 и др.) и весьма большими (уран-238, радий, плутоний и др.).

При внедрении в организм радиоактивных элементов с коротким периодом полураспада вредное воздействие радиации и болезненные явления прекращаются довольно быстро.

Дозы радиационного облучения

Мерой количества радиоактивных веществ является их активность С, выражающаяся числом распадов атомных ядер в единицу времени. За единицу активности принимают распад в секунду (распад/с).

Эта единица в системе Си получила название Беккерель (Бк). Один Беккерель соответствует одному распаду в секунду для любого радионуклида. Внесистемной единицей активности является кюри. Кюри (Kи) – это активность радиоактивного вещества, в котором распадается 3,7*1010 ядер в секунду. 1 Ки = 3,7*1010 Бк. Обычно пользуются единицами более мелкими - милликюри (мКи) и микрокюри (мкКи).

Различают экспозиционную, поглощенную и эквивалентную дозу излучения.

Экспозиционная доза – кулон на килограмм, (Кл/кг) характеризует действие ионизирующего излучения

Dэксп. = Q/m,

где Q - заряд одного знака образованный при радиоактивном облучении воздуха, Кл (кулон);

m - масса воздуха, кг.

Внесистемной единицей экспозиционной дозы излучения является рентген (Р).

1 рентген - доза радиоактивного излучения, которая в 1 см3 сухого воздуха при нормальных атмосферных условиях производит ионы, несущие заряд каждого знака в одну электростатическую единицу.

Важное значение для эффекта облучения имеет мощность дозы облучения. За внесистемную единицу мощности дозы облучения принят рентген в секунду (Р/с).

Мощность экспозиционной дозы (ампер на килограмм) определяется по формуле:

Рэксп = Dэксп /t ,

где t - время облучения.

Поглощенная доза излучения (Дж/кг) характеризует поглощающие свойства облучаемой среды и во многом зависит от вида излучения. Эта единица получила название грей (Гр).

Dпогл = E/m,

где Е - энергия излучения, Дж;

m - масса среды, поглотившей энергию, кг.

3а внесистемную единицу поглощенной дозы излучения принят рад. 1рад.=10-2Гр.

Более мелкими единицами является миллирад (мрад) и микрорад (мкрад).

Мощность поглощенной дозы, вт/кг

Рпогл = Dпогл/t .

Для оценки неодинакового биологического эффекта, вызываемого одной и той же дозой различных видов ионизирующих излучений, введено понятие эквивалентной дозы. Эквивалентная доза радиоактивного излучения характеризуется поглощенной дозой излучения и коэффициентом относительной биологической эффективности, называемым коэффициентом качества (Кк) различных излучений при воздействии их на человека.

Dэкв = DпоглKk .

Единица эквивалентной дозы в системе СИ – Зиверт (Зв). Один Зиверт соответствует дозе в 1 Дж/кг (для рентгеновского, γ-, и β- излучений).

Единицей эквивалентной дозы излучения является бэр (биологический эквивалент рентгена).

Бэр – доза любого вида ионизирующего излучения, производящая такое же биологическое действие, как и доза рентгеновского или гамма-излучения в 1 рентген.

Коэффициент качества для гамма- и рентгеновского излучения, бета частиц, электронов и позитронов ранен единице.

ина защиты зависит от энергии проникающего излучения и характеристик поглотителя. Толщина защиты равна длине свободного пробега частицы. Для исследования прохождения альфа-частиц в веществе рассчитываются следующие величины:

Эмпирическая формула для расчета среднего пробега в воздухе при нормальных условиях:

4Мэв< Е α < 7 МэВ

Средний пробег альфа-частиц в веществе

(формула Брэгга)

при известном атомном номере вещества-поглотителя

при известном пробеге альфа-частиц в воздухе с той же энергией

Бета-частицы- это поток электронов и позитронов. Заряд и масса у них одинаковы. Но отличается знак заряда. Кроме того, среднее время жизни электронов неограниченно долго, у позитронов – 10 -9 с. При аннигиляции они образуют два гамма-кванта: . Частицы от искусственных и естественных радионуклидов имеют энергию от 0 до 10 МэВ. Распределение бета-частиц по энергии называется бета-спектром. Зависимость количества бета-частиц после прохождения слоя вещества зависит от энергии бета-частиц и толщины поглотителя (3- при минимальной толщине поглотителя):


Е β
Радиационные потери при торможении
Ионизационные потери
Ядерные реакции
Основная задача защиты от мощных пучков бета-частиц сводится к защите от вторичного тормозного излучения, так как энергии хватает на небольшую длину пробега. Для расчета толщины зашиты от бета-частиц применяют следующие формулы:

(0,15<Е β <0,8 МэВ)

(0,8<Е β <3 МэВ)

(Е β >0,5 МэВ) (Е β <0,5 МэВ)

Если толщина поглотителя намного меньше максимального пробега, то ослабление плотности потока происходит по закону экспоненты:

Ф(х)= Ф о ехр (-μх),

где х- толщина поглотителя, ; μ- массовый коэффициент п

Изм.
Лист
№ докум.
Подпись
Дата
Лист
3AЭC-6.12 ПР-2
оглощения электронов, .

Число частиц, прошедших через слой поглотителя, убывает с увеличением толщины поглотителя х по закону.

У слова «радиация» латинские корни. Radius на латыни означает луч. Вообще под радиацией понимаются все природные излучения. Это радиоволны, ультрафиолет, альфа излучение, даже обычный свет. Одни излучения вредны, другие могут стать даже полезными.

Образование

Возникновению альфа-частиц способствуют ядерный альфа-распад, ядерные реакции или полная ионизация атомов гелия-4. Первичные космические лучи в значительной мере состоят из альфа-частиц.

В основном, это ускоренные ядра гелия из потоков межзвёздного газа. Некоторые частицы возникают как сколы от более тяжёлых ядер космических лучей. Также возможно их получение при помощи ускорителя заряженных частиц.

Характеристика

Альфа излучение - разновидность излучений ионизирующих. Это поток тяжёлых частиц, заряженных положительно, движущихся со скоростью около 20000 км/сек и имеющих достаточную энергию. Основные источники этого типа излучения - радиоактивные изотопы веществ, имеющих свойства распада в связи со слабостью атомных связей. Такой распад способствует излучению альфа-частиц.

Главной особенностью этого излучения является его очень низкая проникающая способность. Этим оно отлично от иных типов ядерных излучений. Это вытекает из их высочайших ионизирующих способностей. Но на каждое действие ионизации затрачивается определённая энергия.

Взаимодействие тяжёлых заряженных частиц происходит чаще с атомными электронами, поэтому они почти не отклоняются от начального направления движения. Исходя из этого, путь частиц измеряется как прямое расстояние от источника самих частиц до той точки, где они останавливаются.

Измерение пробега альфа-частиц производится в единицах длины или поверхностной плотности материала. В воздухе величина такого пробега может составить 3 - 11 см, а в средах жидкой или твёрдой - только сотые доли миллиметра.

Воздействие на человека

Вследствие очень активной ионизации атомов, альфа-частицы интенсивно теряют энергию. Поэтому её недостаточно даже для проникновения сквозь омертвевший слой кожи. Это сводит риски радиационного облучения к нулю. Но если частицы были получены при помощи ускорителя, то они станут высокоэнергичными.

Главную опасность несут частицы, появившиеся в процессе альфа-распада радионуклидов. При попадании их внутрь организма даже микроскопической дозы хватит, чтобы возникла острая лучевая болезнь. И очень часто такое заболевание заканчивается летально.

Воздействие на электронную аппаратуру

Альфа-частицы создают в полупроводниках электронно-дырочные пары. Это может вызывать сбои в полупроводниковых приборах. Для предотвращения нежелательных последствий для производства микросхем применяют материалы, имеющие низкую альфа-активность.

Детектирование

Чтобы узнать, присутствует ли альфа излучение, и в каких значениях, необходимо его обнаружить и измерить. Для этих целей существуют детекторы - счётчики частиц. Эти приборы регистрируют как сами частицы, так и отдельные атомные ядра, и определяют их характеристики. Наиболее известным детектором является счётчик Гейгера.

Защита от альфа-частиц

Низкая проникающая способность альфа излучения делает его достаточно безопасным. Оно воздействует на организм человека только в особой близости от источника излучения. Достаточно листа бумаги, резиновых перчаток, пластиковых очков, чтобы надёжно защитить себя.

Наличие респиратора должно быть обязательным условием. Главная опасность - попадание частиц внутрь организма, поэтому дыхательные пути необходимо защищать особенно тщательно.

Польза альфа излучения

Применение этого типа излучения в медицине называется альфа-терапией. Она использует полученные при альфа-излучении изотопы - радон, торон, имеющие малые сроки жизни.

Разработаны и специальные процедуры, положительно влияющие на жизненно важные системы организма человека, а ещё оказывающие обезболивающие и противовоспалительные действия. Это радоновые ванны, альфа-радиоактивные компрессы, вдыхание воздуха, насыщенного радоном. В данном случае, альфа излучение - полезная радиоактивность.

Медики Великобритании успешно экспериментируют с новыми средствами, использующими воздействие альфа-частиц. Эксперимент производился на 992 пациентах, у которых простата была поражена раком поздних стадий. Результатом этого стало снижение смертности на 30%.

Выводы учёных говорят о том, что альфа-частицы являются безопасными для пациентов. Они и более эффективны в сравнении с использовавшимися обычно бета-частицами. Также воздействие их более точечное, и для разрушения раковой клетки требуется не больше трёх ударов. Бета-частицы такого же эффекта достигают после нескольких тысяч попаданий.

Источники излучения

Активно развивающаяся цивилизация и окружающую среду загрязняет активно. Радиоактивному загрязнению окружающего нас пространства способствуют объекты урановой промышленности, ядерные реакторы, предприятия радиохимической промышленности, захоронения радиоактивных отходов.

Также альфа и другие типы излучений возможны при использовании радионуклидов на объектах народного хозяйства. Космические исследования и сети радиоизотопных лабораторий тоже добавляют излучений в общую их массу.

Альфа-излучение (альфа-лучи) - это один из видов ионизирующих излучений; представляет собой поток быстро движущихся, обладающих значительной энергией, положительно заряженных частиц (альфа-частиц).

Основным источником альфа-излучения служат альфа-излучатели - , испускающие альфа-частицы в процессе распада. Особенностью альфа-излучений является его малая проникающая способность. Пробег альфа-частиц в веществе (то есть путь, на котором они производят ионизацию) оказывается очень коротким (сотые доли миллиметра в биологических средах, 2,5-8 см в воздухе).

Однако вдоль короткого пути альфа-частицы создают большое число ионов, то есть обусловливают большую линейную плотность ионизации. Это обеспечивает выраженную относительную биологическую эффективность, в 10 раз большую, чем при воздействии рентгеновского и . При внешнем облучении тела альфачастицы могут (при достаточно большой поглощенной дозе излучения) вызывать сильные, хотя и поверхностные (короткий пробег) ожоги; при попадании через долгоживущие альфа-излучатели разносятся по телу током крови и депонируются в органах и др., вызывая внутреннее облучение организма. Альфа-излучение применяют для лечения некоторых заболеваний. См. также , Излучения ионизирующие.

Альфа-излучение - поток положительно заряженных α-частиц (ядер атомов гелия).

Основным источником альфа-излучения являются естественные радиоактивные изотопы, многие из которых испускают при распаде альфа-частицы с энергией от 3,98 до 8,78 Мэв. Благодаря большой энергии, двукратному (по сравнению с электроном) заряду и относительно небольшой (по сравнению с другими видами ионизирующих излучений) скорости движения (от 1,4·10 9 до 2,0·10 9 см/сек) альфа-частицы создают очень большое число ионов, густо расположенных по их пути (до 254 тыс. пар ионов). При этом они быстро расходуют свою энергию, превращаясь в обычные атомы гелия. Пробеги альфа-частиц в воздухе при нормальных условиях - от 2,50 до 8,17 см; в биологических средах - сотые доли миллиметра.

Линейная плотность ионизации, создаваемой альфа-частицами, достигает нескольких тысяч пар ионов на 1 микрон пути в тканях.

Ионизация, производимая альфа-излучением, обусловливает ряд особенностей в тех химических реакциях, которые протекают в веществе, в частности в живой ткани (образование сильных окислителей, свободного водорода и кислорода и др.). Эти радиохимические реакции, протекающие в биологических тканях под воздействием альфа-излучения, в свою очередь вызывают особую, большую, чем у других видов ионизирующих излучений, биологическую эффективность альфа-излучения. По сравнению с рентгеновским, бета- и гамма-излучением относительная биологическая эффективность альфа-излучения (ОБЭ) принимается равной 10, хотя в различных случаях она может меняться в широких пределах. Как и другие виды ионизирующих излучений, альфа-излучение применяется для лечения больных с различными заболеваниями. Этот раздел лучевой терапии называется альфа-терапией (см.).

См. также Излучения ионизирующие, Радиоактивность.